翻訳と辞書
Words near each other
・ Intelligent Governance for the 21st Century
・ Intelligent grass mouse
・ Intelligent Ground Vehicle Competition
・ Intelligent haunting
・ Intelligent Home Control
・ Intelligent Hoodlum
・ Intelligent hybrid inverter
・ Intelligent Input Bus
・ Intelligent Interweaving technology
・ Intelligent Land Investments
・ Intelligent laser speckle classification
・ Intelligent life
・ Intelligent Life (magazine)
・ Intelligent life in the Universe
・ Intelligent light
Intelligent lighting
・ Intelligent Machines Research Corporation
・ Intelligent Mail barcode
・ Intelligent Maintenance Systems
・ Intelligent Medical Imaging
・ Intelligent Medical Objects
・ Intelligent medical search engine
・ Intelligent Money
・ Intelligent Munitions System
・ Intelligent Nation 2015
・ Intelligent Network
・ Intelligent Network Interface Device
・ Intelligent Parking Assist System
・ Intelligent Peripheral Interface
・ Intelligent personal assistant


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Intelligent lighting : ウィキペディア英語版
Intelligent lighting refers to stage lighting that has automated or mechanical abilities beyond those of traditional, stationary illumination. Although the most advanced intelligent lights can produce extraordinarily complex effects, the intelligence lies with the programmer of the show rather than the instruments or the lighting operator. For this reason, intelligent lighting is also known as automated lighting, moving lights or moving heads.==History==There are many patents dating back from 1906, with Edmund Sohlberg of Kansas City. The lantern used a carbon-arc bulb and was operated not by motors or any form of electronics, but by cords that were operated manually to control pan, tilt and zoom.1925 saw the first use of electrical motors to move the fixture, and with it the beam position, by Herbet F. King (Patent number: 1,680,685). In 1936 patent number 2,054,224 was granted to a similar device, with which the pan and tilt were controlled by means of a joystick as opposed to switches. From this point on until 1969, various other inventors made similar lights and improved on the technology, but with no major breakthroughs. During this period, Century Lighting (now Strand) started retailing such units specially made to order, retrofitted onto any of their existing lanterns up to 750 watts to control pan and tilt.George Izenour made the next breakthrough in 1969 with the first ever fixture to use a mirror on the end of an ellipsoidal to redirect the beam of light remotely. In 1969, Jules Fisher, from Casa Manana area theatre in Texas saw the invention and use of 12 PAR 64 lanterns with 120watt, 12volts lamps fitted, 360 degrees of pan and 270 degrees of tilt, a standard that lasted until the 1990s. This lamp was also known as the 'Mac-Spot' http://www.mts.net/~william5/history/hol.htm - scroll down to "Early Automated Lighting" ~1970In Bristol in 1968, progress was also being made, mainly for use in live music. Peter Wynne Wilson refers to the use of 1 kW profiles, with slides onto which gobos were printed, inserted from a reel just like on a slide projector. The fixtures also had an iris, a multiple coloured gel wheel. These lights were also fitted with mirrors and made for an impressive light show for a Pink Floyd Gig in London. Another fixture known as the 'Cycklops' was also used for music in the USA, although it was limited in terms of capabilities. With only pan, tilt, and color functions, and at 1.2meters long and weighing in at 97 kg including the ballast, they were heavy and cumbersome. These units were designed more for replacing the ever unreliable local spotlight operators.In 1978 a Dallas, Texas-based lighting and sound company called Showco began developing a lighting fixture that changed color by rotating dichroic filters. During its development, the designers decided to add motors to motorize pan and tilt. They demonstrated the fixture for the band Genesis in a barn in England in 1980. The band decided to financially back the project. Showco spun off their lighting project into a company called Vari-Lite, and the first fixture was also called the Vari-lite. It also used one of the first lighting desks with a digital core and this enabled lighting states to be programmed in.Genesis was later to order 55 Vari-lites to use in their next chain of gigs across the UK. The lights were supplied with a Vari-Lite console which had 32 channels, five 1802 processors and a dramatic improvement of the first console which was very simple and had an external processing unit.In 1986 Vari-Lite introduced a new series of lighting fixtures and control consoles. They referred to the new system as their Series 200, with the new lights designated "VL-2 Spot Luminaire", and "VL-3 Wash Luminaire". The Series 200 system was controlled by the Artisan console. Vari-Lite retroactively named the original system "series-100". The Original Vari-Lite console was retroactively named the "series 100 console" and the original Vari-Lite was retroactively named the "VL-1 Spot Luminaire". The prototype fixture shown to Genesis in 1980 was re-designated the "VL-zero" in the mid-1990s to keep the naming consistent.In 1985, the first moving head to use the DMX protocol was produced by Summa Technologies. Up till that time, moving lights were using other communication protocols, such as DIN8, AMX, D54 and the proprietary protocols of other companies, such as VariLite, Tasco, High End and Coemar. The Summa HTI had a 250watt HTI bulb, 2 colour wheels, a Gobo wheel, a mechanical dimmer and zoom functions.The first purchasable/mass-produced scanner was the Coemar Robot, first produced in 1986. Initially produced with either the GE MARC350 lamp, or the Philips SN250. Later versions were factory equipped with the Osram HTI400, a modification that High End Systems had been doing since 1987. The Robot used model aircraft servo motors to control Pan, Tilt, Color and Gobo, with the gobo wheel providing the shutter function as well. The Color wheel had 4 dichroic color filters ( Red, Blue, yellow, and Green), and the gobo wheel contained 4 stamped patterns (non-replaceable). The Robot communicated with a proprietary 8bit protocol, yet had no microprocessors/pal's/pics/ram, O/S or other modern logic device.In 1987, Clay Paky began producing their first scanners, the Golden Scan 1 & Crystal Scan. They utilized stepper motors instead of servos and used a HMI 575 lamp, bright and with a far more uniform beam brightness. This was followed by the Intellabeam in 1989, released by High End, who, at the time were the Distributors for Clay Paky.In the 1990s, the future came closer with Martin, a Danish Company that produced Fog Machines. They began to manufacture a line of scanners known as Roboscans, with a variety of different specifications for different users. They were named for their wattages, with a range starting with 1004 and 1016. Later came the 804 and 805, designed for small venues. Other models were the 218, 518, 812, 918 and 1200Pro units. Martin also produced a whole new range of Moving Heads called the Martin Mac Series. This series is still extremely popular today, with new fixtures such as the Mac III and Mac Viper, which are among the highest quality moving lights.The most recent development in intelligent lighting is digital lighting, with fixtures such as High End System's DL3. These fixtures consist of a bright LCD or DLP projector mounted on a moving yoke, much like that of an ordinary moving head. These fixtures also contain an integrated media server, which allows for millions of colour choices, endless libraries of gobo-like images, and projection of images and video.


Intelligent lighting refers to stage lighting that has automated or mechanical abilities beyond those of traditional, stationary illumination. Although the most advanced intelligent lights can produce extraordinarily complex effects, the intelligence lies with the programmer of the show rather than the instruments or the lighting operator. For this reason, intelligent lighting is also known as automated lighting, moving lights or moving heads.
==History==
There are many patents dating back from 1906, with Edmund Sohlberg of Kansas City. The lantern used a carbon-arc bulb and was operated not by motors or any form of electronics, but by cords that were operated manually to control pan, tilt and zoom.
1925 saw the first use of electrical motors to move the fixture, and with it the beam position, by Herbet F. King (Patent number: 1,680,685). In 1936 patent number 2,054,224 was granted to a similar device, with which the pan and tilt were controlled by means of a joystick as opposed to switches. From this point on until 1969, various other inventors made similar lights and improved on the technology, but with no major breakthroughs. During this period, Century Lighting (now Strand) started retailing such units specially made to order, retrofitted onto any of their existing lanterns up to 750 watts to control pan and tilt.
George Izenour made the next breakthrough in 1969 with the first ever fixture to use a mirror on the end of an ellipsoidal to redirect the beam of light remotely. In 1969, Jules Fisher, from Casa Manana area theatre in Texas saw the invention and use of 12 PAR 64 lanterns with 120watt, 12volts lamps fitted, 360 degrees of pan and 270 degrees of tilt, a standard that lasted until the 1990s. This lamp was also known as the 'Mac-Spot' 〔http://www.mts.net/~william5/history/hol.htm - scroll down to "Early Automated Lighting" ~1970〕
In Bristol in 1968, progress was also being made, mainly for use in live music. Peter Wynne Wilson refers to the use of 1 kW profiles, with slides onto which gobos were printed, inserted from a reel just like on a slide projector. The fixtures also had an iris, a multiple coloured gel wheel. These lights were also fitted with mirrors and made for an impressive light show for a Pink Floyd Gig in London. Another fixture known as the 'Cycklops' was also used for music in the USA, although it was limited in terms of capabilities. With only pan, tilt, and color functions, and at 1.2meters long and weighing in at 97 kg including the ballast, they were heavy and cumbersome. These units were designed more for replacing the ever unreliable local spotlight operators.
In 1978 a Dallas, Texas-based lighting and sound company called Showco began developing a lighting fixture that changed color by rotating dichroic filters. During its development, the designers decided to add motors to motorize pan and tilt. They demonstrated the fixture for the band Genesis in a barn in England in 1980. The band decided to financially back the project. Showco spun off their lighting project into a company called Vari-Lite, and the first fixture was also called the Vari-lite. It also used one of the first lighting desks with a digital core and this enabled lighting states to be programmed in.
Genesis was later to order 55 Vari-lites to use in their next chain of gigs across the UK. The lights were supplied with a Vari-Lite console which had 32 channels, five 1802 processors and a dramatic improvement of the first console which was very simple and had an external processing unit.
In 1986 Vari-Lite introduced a new series of lighting fixtures and control consoles. They referred to the new system as their Series 200, with the new lights designated "VL-2 Spot Luminaire", and "VL-3 Wash Luminaire". The Series 200 system was controlled by the Artisan console. Vari-Lite retroactively named the original system "series-100". The Original Vari-Lite console was retroactively named the "series 100 console" and the original Vari-Lite was retroactively named the "VL-1 Spot Luminaire". The prototype fixture shown to Genesis in 1980 was re-designated the "VL-zero" in the mid-1990s to keep the naming consistent.
In 1985, the first moving head to use the DMX protocol was produced by Summa Technologies. Up till that time, moving lights were using other communication protocols, such as DIN8, AMX, D54 and the proprietary protocols of other companies, such as VariLite, Tasco, High End and Coemar. The Summa HTI had a 250watt HTI bulb, 2 colour wheels, a Gobo wheel, a mechanical dimmer and zoom functions.
The first purchasable/mass-produced scanner was the Coemar Robot, first produced in 1986. Initially produced with either the GE MARC350 lamp, or the Philips SN250. Later versions were factory equipped with the Osram HTI400, a modification that High End Systems had been doing since 1987. The Robot used model aircraft servo motors to control Pan, Tilt, Color and Gobo, with the gobo wheel providing the shutter function as well. The Color wheel had 4 dichroic color filters ( Red, Blue, yellow, and Green), and the gobo wheel contained 4 stamped patterns (non-replaceable). The Robot communicated with a proprietary 8bit protocol, yet had no microprocessors/pal's/pics/ram, O/S or other modern logic device.
In 1987, Clay Paky began producing their first scanners, the Golden Scan 1 & Crystal Scan. They utilized stepper motors instead of servos and used a HMI 575 lamp, bright and with a far more uniform beam brightness. This was followed by the Intellabeam in 1989, released by High End, who, at the time were the Distributors for Clay Paky.
In the 1990s, the future came closer with Martin, a Danish Company that produced Fog Machines. They began to manufacture a line of scanners known as Roboscans, with a variety of different specifications for different users. They were named for their wattages, with a range starting with 1004 and 1016. Later came the 804 and 805, designed for small venues. Other models were the 218, 518, 812, 918 and 1200Pro units. Martin also produced a whole new range of Moving Heads called the Martin Mac Series. This series is still extremely popular today, with new fixtures such as the Mac III and Mac Viper, which are among the highest quality moving lights.
The most recent development in intelligent lighting is digital lighting, with fixtures such as High End System's DL3. These fixtures consist of a bright LCD or DLP projector mounted on a moving yoke, much like that of an ordinary moving head. These fixtures also contain an integrated media server, which allows for millions of colour choices, endless libraries of gobo-like images, and projection of images and video.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアでIntelligent lighting refers to stage lighting that has automated or mechanical abilities beyond those of traditional, stationary illumination. Although the most advanced intelligent lights can produce extraordinarily complex effects, the intelligence lies with the programmer of the show rather than the instruments or the lighting operator. For this reason, intelligent lighting is also known as automated lighting, moving lights or moving heads.==History==There are many patents dating back from 1906, with Edmund Sohlberg of Kansas City. The lantern used a carbon-arc bulb and was operated not by motors or any form of electronics, but by cords that were operated manually to control pan, tilt and zoom.1925 saw the first use of electrical motors to move the fixture, and with it the beam position, by Herbet F. King (Patent number: 1,680,685). In 1936 patent number 2,054,224 was granted to a similar device, with which the pan and tilt were controlled by means of a joystick as opposed to switches. From this point on until 1969, various other inventors made similar lights and improved on the technology, but with no major breakthroughs. During this period, Century Lighting (now Strand) started retailing such units specially made to order, retrofitted onto any of their existing lanterns up to 750 watts to control pan and tilt.George Izenour made the next breakthrough in 1969 with the first ever fixture to use a mirror on the end of an ellipsoidal to redirect the beam of light remotely. In 1969, Jules Fisher, from Casa Manana area theatre in Texas saw the invention and use of 12 PAR 64 lanterns with 120watt, 12volts lamps fitted, 360 degrees of pan and 270 degrees of tilt, a standard that lasted until the 1990s. This lamp was also known as the 'Mac-Spot' http://www.mts.net/~william5/history/hol.htm - scroll down to "Early Automated Lighting" ~1970In Bristol in 1968, progress was also being made, mainly for use in live music. Peter Wynne Wilson refers to the use of 1 kW profiles, with slides onto which gobos were printed, inserted from a reel just like on a slide projector. The fixtures also had an iris, a multiple coloured gel wheel. These lights were also fitted with mirrors and made for an impressive light show for a Pink Floyd Gig in London. Another fixture known as the 'Cycklops' was also used for music in the USA, although it was limited in terms of capabilities. With only pan, tilt, and color functions, and at 1.2meters long and weighing in at 97 kg including the ballast, they were heavy and cumbersome. These units were designed more for replacing the ever unreliable local spotlight operators.In 1978 a Dallas, Texas-based lighting and sound company called Showco began developing a lighting fixture that changed color by rotating dichroic filters. During its development, the designers decided to add motors to motorize pan and tilt. They demonstrated the fixture for the band Genesis in a barn in England in 1980. The band decided to financially back the project. Showco spun off their lighting project into a company called Vari-Lite, and the first fixture was also called the Vari-lite. It also used one of the first lighting desks with a digital core and this enabled lighting states to be programmed in.Genesis was later to order 55 Vari-lites to use in their next chain of gigs across the UK. The lights were supplied with a Vari-Lite console which had 32 channels, five 1802 processors and a dramatic improvement of the first console which was very simple and had an external processing unit.In 1986 Vari-Lite introduced a new series of lighting fixtures and control consoles. They referred to the new system as their Series 200, with the new lights designated "VL-2 Spot Luminaire", and "VL-3 Wash Luminaire". The Series 200 system was controlled by the Artisan console. Vari-Lite retroactively named the original system "series-100". The Original Vari-Lite console was retroactively named the "series 100 console" and the original Vari-Lite was retroactively named the "VL-1 Spot Luminaire". The prototype fixture shown to Genesis in 1980 was re-designated the "VL-zero" in the mid-1990s to keep the naming consistent.In 1985, the first moving head to use the DMX protocol was produced by Summa Technologies. Up till that time, moving lights were using other communication protocols, such as DIN8, AMX, D54 and the proprietary protocols of other companies, such as VariLite, Tasco, High End and Coemar. The Summa HTI had a 250watt HTI bulb, 2 colour wheels, a Gobo wheel, a mechanical dimmer and zoom functions.The first purchasable/mass-produced scanner was the Coemar Robot, first produced in 1986. Initially produced with either the GE MARC350 lamp, or the Philips SN250. Later versions were factory equipped with the Osram HTI400, a modification that High End Systems had been doing since 1987. The Robot used model aircraft servo motors to control Pan, Tilt, Color and Gobo, with the gobo wheel providing the shutter function as well. The Color wheel had 4 dichroic color filters ( Red, Blue, yellow, and Green), and the gobo wheel contained 4 stamped patterns (non-replaceable). The Robot communicated with a proprietary 8bit protocol, yet had no microprocessors/pal's/pics/ram, O/S or other modern logic device.In 1987, Clay Paky began producing their first scanners, the Golden Scan 1 & Crystal Scan. They utilized stepper motors instead of servos and used a HMI 575 lamp, bright and with a far more uniform beam brightness. This was followed by the Intellabeam in 1989, released by High End, who, at the time were the Distributors for Clay Paky.In the 1990s, the future came closer with Martin, a Danish Company that produced Fog Machines. They began to manufacture a line of scanners known as Roboscans, with a variety of different specifications for different users. They were named for their wattages, with a range starting with 1004 and 1016. Later came the 804 and 805, designed for small venues. Other models were the 218, 518, 812, 918 and 1200Pro units. Martin also produced a whole new range of Moving Heads called the Martin Mac Series. This series is still extremely popular today, with new fixtures such as the Mac III and Mac Viper, which are among the highest quality moving lights.The most recent development in intelligent lighting is digital lighting, with fixtures such as High End System's DL3. These fixtures consist of a bright LCD or DLP projector mounted on a moving yoke, much like that of an ordinary moving head. These fixtures also contain an integrated media server, which allows for millions of colour choices, endless libraries of gobo-like images, and projection of images and video.」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.